Reducing Complexity in Parallel Algebraic Multigrid Preconditioners

نویسندگان

  • Hans De Sterck
  • Ulrike Meier Yang
  • Jeffrey J. Heys
چکیده

Algebraic multigrid (AMG) is a very efficient iterative solver and preconditioner for large unstructured linear systems. Traditional coarsening schemes for AMG can, however, lead to computational complexity growth as problem size increases, resulting in increased memory use and execution time, and diminished scalability. Two new parallel AMG coarsening schemes are proposed, that are based on solely enforcing a maximum independent set property, resulting in sparser coarse grids. The new coarsening techniques remedy memory and execution time complexity growth for various large three-dimensional (3D) problems. If used within AMG as a preconditioner for Krylov subspace methods, the resulting iterative methods tend to converge fast. This paper discusses complexity issues that can arise in AMG, describes the new coarsening schemes and examines the performance of the new preconditioners for various large 3D problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biorthogonal Wavelet Based Algebraic Multigrid Preconditioners for Large Sparse Linear Systems

In this article algebraic multigrid as preconditioners are designed, with biorthogonal wavelets, as intergrid operators for the Krylov subspace iterative methods. Construction of hierarchy of matrices in algebraic multigrid context is based on lowpass filter version of Wavelet Transform. The robustness and efficiency of this new approach is tested by applying it to large sparse, unsymmetric and...

متن کامل

Parallel Triangular Solvers on GPU

In this paper, we investigate GPU based parallel triangular solvers systematically. The parallel triangular solvers are fundamental to incomplete LU factorization family preconditioners and algebraic multigrid solvers. We develop a new matrix format suitable for GPU devices. Parallel lower triangular solvers and upper triangular solvers are developed for this new data structure. With these solv...

متن کامل

Function-based Algebraic Multigrid method for the 3D Poisson problem on structured meshes

Multilevel methods, such as Geometric and Algebraic Multigrid, Algebraic Multilevel Iteration, Domain Decomposition-type methods have been shown to be the methods of choice for solving linear systems of equations, arising in many areas of Scientific Computing. The methods, in particular the multigrid methods, have been efficiently implemented in serial and parallel and are available via many sc...

متن کامل

A Performance Comparison of Algebraic Multigrid Preconditioners on CPUs, GPUs, and Xeon Phis

Algebraic multigrid preconditioners for accelerating iterative solvers are a popular choice for a broad range of applications, because they are able to obtain asymptotic optimality, yet can be applied in a black-box manner. However, only a few variants of algebraic multigrid preconditioners can fully benefit from finegrained parallelization available on multiand many-core architectures. Previou...

متن کامل

A Novel Aggregation Method based on Graph Matching for Algebraic MultiGrid Preconditioning of Sparse Linear Systems

Multilevel techniques are very effective tools for preconditioning iterative Krylov methods in the solution of sparse linear systems; among them, Algebraic MultiGrid (AMG) are widely employed variants. In [2, 4] it is shown how parallel smoothed aggregation techniques can be used in combination with domain decomposition Schwarz preconditioners to obtain AMG preconditioners; the effectiveness of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2006